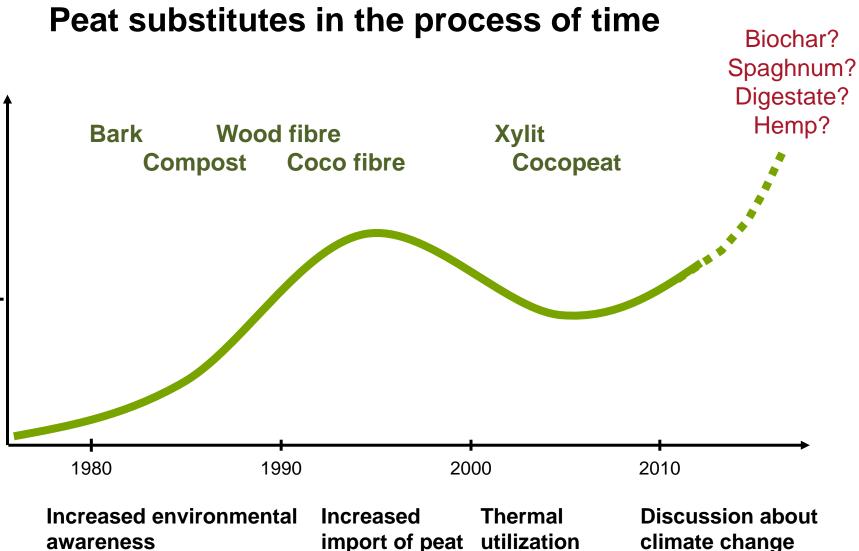


Using new substrate materials in Germany

Dr. Annette Bucher

University of Applied Sciences Weihenstephan-Triesdorf, Germany


Background

- » Germany: 9.5 mio m³ of peat p.a. for horticultural purposes
- » Advantages of peat
 - High water capacity
 - High air capacity
 - Good structural stability
 - Free of pathogens, toxic substances and weeds
 - Low microbial activity
 - > Low pH and nutrient level
 - Reliable high quality
 - > Many years of experience

» Why not use peat

- Peat mining destroys the ecosystem bog
- Peat is renewable, but very slowly: 1 m in 1000 years
- Drainage of bogs sets free high amounts of CO₂ (increases climate change)

Importance

Demands on substrate materials

Chemical

- » Low pH
- » Low salt content
- » Beneficial contents of nutrients
- » Clear nutrient dynamics
- » High buffer capacity

Physical

- » Stable structure
- » Lightweight
- » High water and air capacity
- » Rewetable
- » Good capillarity

Biological

- » Free of weeds, pests and pathogens
- » Free of inhibitory and harmful substances

Other

- » Storable
- » Constant quality
- » Constant available
- » Low-priced

Possible substrate raw materials

- » Bark compost
- » Green compost
- » Compost of digestate
- » Wood fibre
- » Coconut materials
- » Xylit
- » Biochar / Hydrochar
- » Sphagnum
- » Miscanthus straw
- » Rice husks
- » Hemp fibre

Bark compost – Production

Shredding

Adding 2 kg urea/m³

(aerob; ~ 70 °C)

Sieving

Spruce/conifer raw bark

Controlled composting

Bark compost

- » Strong nitrogen immobilization
- » Growth-inhibiting substances (resins, phenols, tannins)

- » Well-balanced nitrogen dynamics
- » Free of growth-inhibiting substances

Bark compost – Positive characteristics

- > High air capacity \rightarrow increases aeration and drainage
- **»** Good structural stability \rightarrow counteracts volume loss
- **»** Good rewetting \rightarrow fast water uptake after drying out
- » Good pH-buffering capacity → stabilizes pH level
- **>** High levels of potassium \rightarrow consider for fertilization
- » High cation exchange capacity
 - \rightarrow reduced risk of salt damage
 - \rightarrow prevents leaching of nutrients

Bark compost – Results

Calibrachoa cultivars grown in peat and peat + bark compost mixture, respectively (Lohr, 2012)

Bark compost – Possible Problems

» Low water capacity

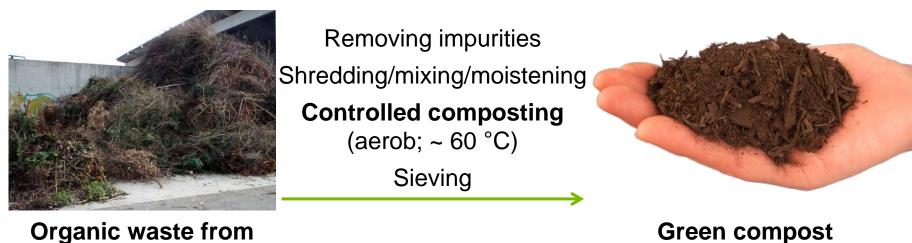
 \rightarrow shorter irrigation intervals

» Possibility of nitrogen immobilization

- \rightarrow stored growing media needs to be analyzed prior to use
- \rightarrow nitrogen accented feeding

» Occasionally high levels of manganese

- \rightarrow add iron chelates
- \rightarrow pH > 6


» Growth-inhibiting substances

→ use quality assured products (germination test)

Green (waste) compost – Production

Organic waste from private gardens and public green spaces

» Weed seeds and pathogens

» High degradability

» Disinfected material

» Stable humic compounds

Green compost – Positive characteristics

- » Good structural stability
 - \rightarrow counteracts volume loss
- » Good rewetting
 - \rightarrow fast water uptake after drying out
- » Good pH-buffering against decrease
 - \rightarrow stabilizes pH level under acidifying conditions
- » Suppression of soil-borne pathogens
 - \rightarrow reduces need of soil applied fungicides
- » High cation exchange capacity
 - \rightarrow reduced risk of salt damage
 - \rightarrow prevents leaching of nutrients

Green compost – Possible Problems

» High and varying nutrient and salt levels

- \rightarrow limits ratio of compost in the growing medium
- \rightarrow must be analyzed prior to use
- \rightarrow use quality assured green composts (substrate-compost)

» Unwanted ingredients and foreign matters

 \rightarrow use quality assured green composts

» Iron deficiency due to high pH-values

- \rightarrow mix with components with low pH
- \rightarrow use water with low HCO₃⁻ level
- \rightarrow ammonium accented feeding
- \rightarrow add elemental sulphur
- \rightarrow use stable Fe-chelates (Fe-EDDHA)
- » Excessive shore flies or soil fungi

 \rightarrow use completely matured composts

Green compost – Results

Fe deficiency chlorosis due to high pH - Calobrachoa cultivars grown in different compost containing substrates (Lohr, 2012)

Compost of digestate– Production

Solid residues from anaerobic digestion of renewable resources (biogas plant, filled with plant and animal material) Controlled composting (aerob; 8 weeks)

Addition of coarse material

Compost of digestate

- » Growth inhibiting substances
- » Not useful as substrate

- » Free of growth inhibiting substances
- » Addition of coarse material does not enhance rotting process but decreases nutrient contents

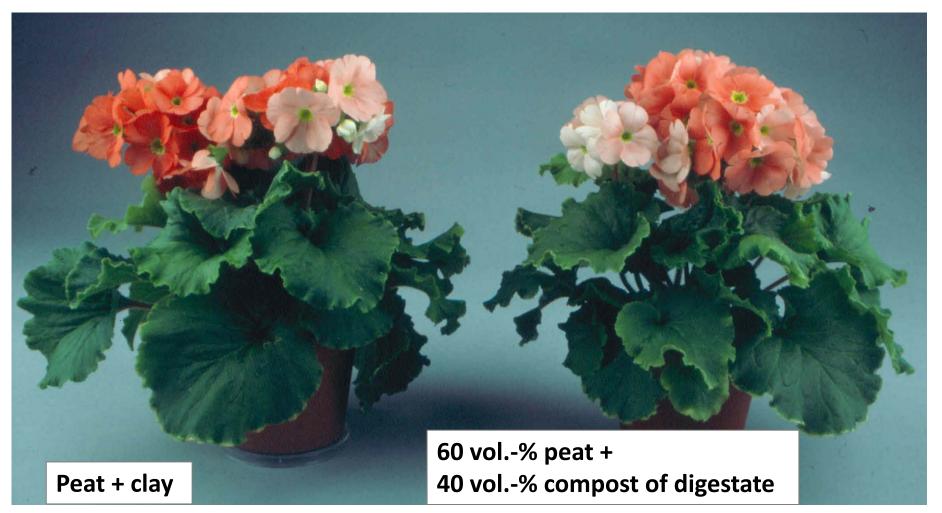
Compost of digestate – Positive characteristics

- » Release of nutrients (N, K, P) \rightarrow consider for fertilization
- » Free of growth inhibiting substances
- » Well balanced nitrogen dynamics

Compost of digestate – Possible problems

- » pH 6.8 8 \rightarrow mix with components with low pH
- » High P contents
 - \rightarrow especially with animal resources (slurry, manure) \rightarrow not advisable
 - \rightarrow plant damage (Fe deficiency chlorosis and necrosis) with $P_2O_5~(CAL) > 500~mg/l$
 - → addition of Fe-sulphate or COMPALOX (P-buffer) decreases P-induced damages
 - \rightarrow maximum application of 10 Vol.-% in substrates

» High salt (4 − 6.2 g/l), sodium and chloride contents


- \rightarrow adjust content of compost in the substrate
- \rightarrow use other low-salt components for mixtures

» High contents of Zn, Cu depending on the raw material

 \rightarrow adjust content of compost in the substrate

Compost of digestate – Results

Plant growth of *Primula* in substrates with compost of digestate (right)

Compost of digestate – Results

P₂O₅ (CAL): 415 mg/l P₂O₅ (CAT): 251 mg/l

P₂O₅ (CAL): 699 mg/l P₂O₅ (CAT): 477 mg/l

P₂O₅ (CAL): 1851 mg/l P₂O₅ (CAT): 758 mg/l

Problems due to high P₂O₅

Development of Scaevola aemula ,Saphira' in substrates with composts of digestate (27 vol.-% = salt input 1 g/l)

Wood fibre – Production

Energy consuming thermal-mechanical processing (> 100 °C)

Adding slow release nitrogen (fertilizer (impregnation)

Untreated conifer wood waste from sawmills

Wood fibre

» Strong nitrogen immobilization

» Largely balanced nitrogen dynamics

Wood fibre – Positive characteristics

- **>** High air capacity \rightarrow increases aeration and drainage
- **»** Good rewetting \rightarrow fast water uptake after drying out
- » Quick drying of the substrate surface \rightarrow less weeds/liverwort
- **>** Low bulk density \rightarrow advantageous for logistics
- ➤ High pH-buffering against decrease → stabilizes pH-level under acidifying conditions
- » Low in soluble salts and nutrients

 \rightarrow required nutrient levels can be adjusted easily

Wood fibre – Possible Problems

» Low water capacity

 \rightarrow short irrigation intervals

» Possibility of nitrogen immobilization

- \rightarrow material needs to be analyzed prior to use
- \rightarrow nitrogen accented feeding
- \rightarrow use quality assured wood fibre

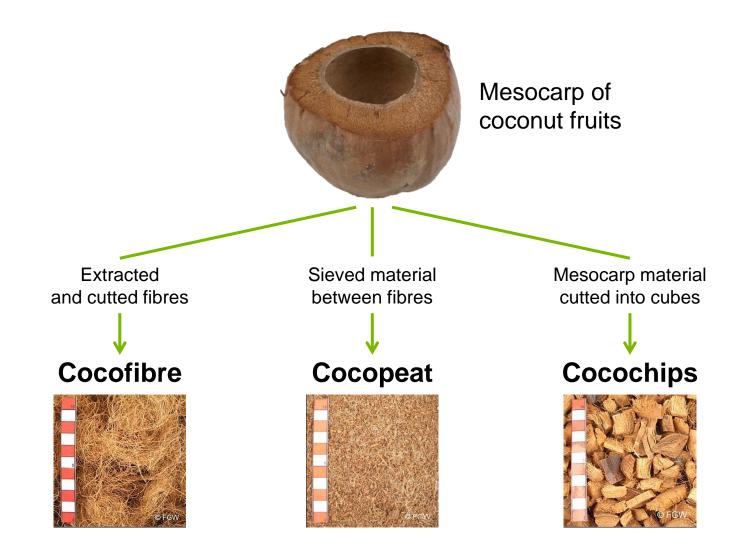
» Relatively quick decomposition

 \rightarrow volume loss

» Low pH-buffering against increase

- \rightarrow ammonium accented feeding
- \rightarrow use water with low HCO₃⁻ level

Wood fibre – Results


100 vol.-% Peat

70 vol.-% wood fibre + 30 vol.-% green compost

Volume loss after 6 months

Coconut materials – Production

Coconut materials – Positive characteristics

- **>** High air capacity \rightarrow low risk of water logging
- » Good rewetting \rightarrow fast water uptake after drying out
- » Low bulk density \rightarrow advantageous for logistics
- » Low rate of decomposition
 - \rightarrow reduced risk of nitrogen immobilization
 - \rightarrow high structural stability
- » Cocofibre: high capillarity
 - \rightarrow supports water absorption
- » Cocopeat: high level of plant-available water
 - \rightarrow good water supply

Coconut materials – Results

(Lohr 2012)

Substrates made of 100 vol.-% cocopeat are possible

- air and water capacity of cocopeat is comparable to peat

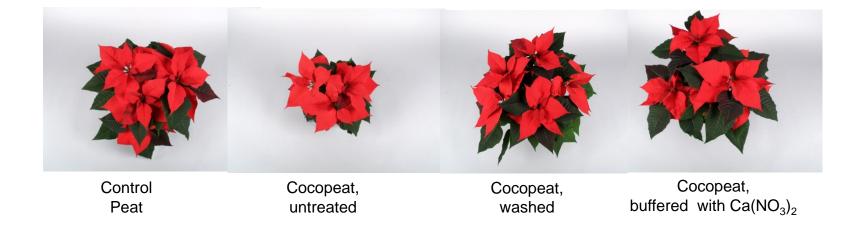
Coconut materials – Possible Problems

» High levels of Na⁺, K⁺ and Cl⁻ from soaking in salt water

- → use only products soaked in fresh water or mechanically produced material
- \rightarrow use buffered material
- \rightarrow consider potassium for fertilization
- \rightarrow use quality assured coconut materials

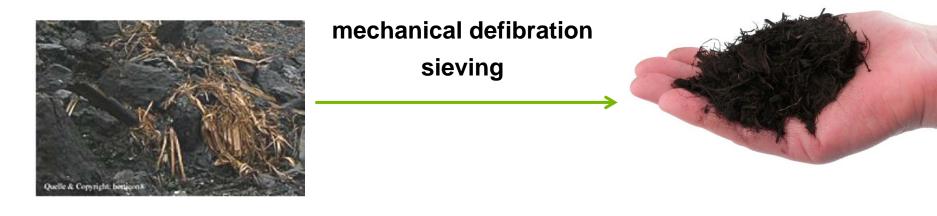
» Transport

- \rightarrow costs
- $\rightarrow CO_2$ footprint


» Cultivation of palms in plantations

 \rightarrow cut down of rain forrests

Coconut materials – Results



Euphorbia pulcherrima at the end of the trial in 100 % cocopeat with different pretreatment

(Emmel, 2014)

Xylit – Production

raw Xylit

- » Minor component at brown coal mining
- » Not completely carbonized, woody material

Xylit

29

Xylit – Positive characteristics

» Low pH (4,5)

 \rightarrow suitable for horitculture (pH adjustment by liming)

- » Low salt contents
- » Low nutrient contents
 - \rightarrow addition of fertilizer recommended
- » Stable N dynamics
 - \rightarrow no/ very low N-immobilization
- » Stable structure / low decomposition
 - \rightarrow no volume loss
- » Hight exchange capacity
 - \rightarrow less risk of salt induced damages with over-fertilization
 - \rightarrow less risk of nutrient loss by leaching

Xylit – Results

Xylit as main component of a peat free potting soil

(Lohr, 2012)

Xylit – Results

80 vol.-% peat + 20 vol.-% xylit

100 vol.-% peat

Development of Impatiens with excessive basic fertilization

Xylit – Possible problems

- » Adherence of brown coal dust
 - \rightarrow pollution by black colored drainage water

» Water holding capacity is lower than of peat

- \rightarrow consider for irrigation strategies
- \rightarrow use surfactant for substrate production

» Question of further availability and sustainability

 \rightarrow end of brown coal mining

Biochar – Production

Dry biomass

Pyrolysis normal pressure Temperature up to 800°C (energy!) Combustion under low oxygen athmosphere

Biochar

Hydrochar – Production

Hydrothermal carbonization 10 - 40 bar

Temperature up to 250° C

(energy!)

anaerob

Hydrochar sludge

drying

Dry and wet biomass + H₂O + catalytic converter

Hydrochar

Biochar / Hydrochar – Positive characteristics

- > High content of stable C → does not escape as CO_2 → mitigate climate change
- » Carbonized biomass is considered to be responsible for the high fertility of the "Terra-Preta soils" found in the Amazonian basin
- » Absorption of nutrients is expected

 \rightarrow might improve soil fertility

» Use of up to 20 vol.-% Biochar / Hydrochar in substrates resulted in acceptable growth

Biochar / Hydrochar – Results

80 % Peat 20 % Biochar 1

100 % Peat

80 % Peat 20 % Biochar 5

Growth of Impatiens-Neuguinea hybrids in substrates with biochar

40 % green compost 30 % cocopeat 30 % biochar 5

40 % green compost 60 % cocopeat 40 % green compost30 % cocopeat30 % biochar 6

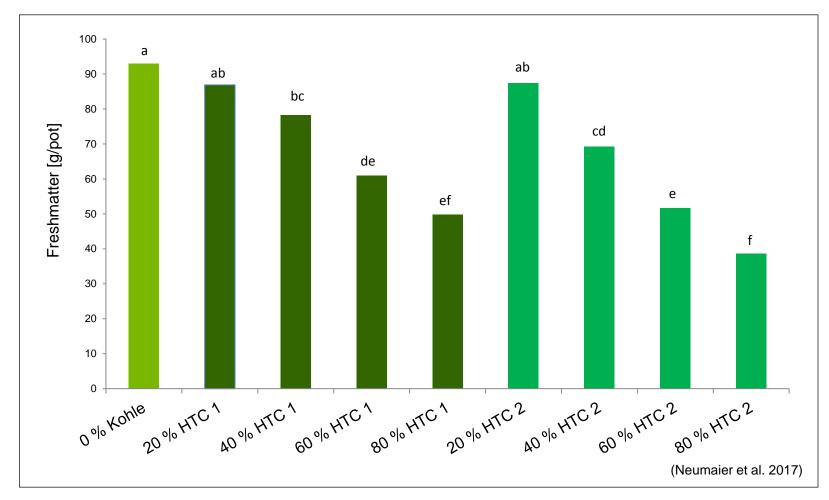
Growth of balcony plants in substrates with different biochars

Biochar / Hydrochar – Possible Problems

» Quality depends on raw material and production process

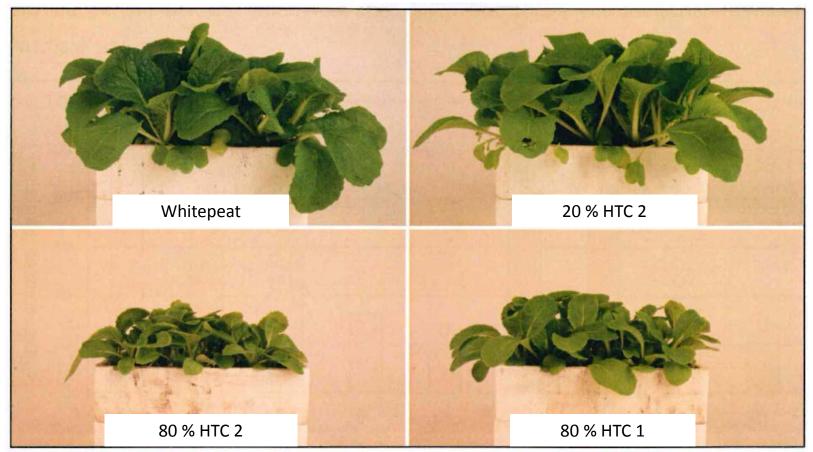
 \rightarrow Biochar is often more suitable than Hydrochar

» Too high N-immobilization (Hydrochar > Biochar)


 \rightarrow not reduced by co-composting in all cases

- » Growth depression with Hydrochar
 - \rightarrow due to N-immobilization and phytotoxic substances
 - \rightarrow should be used only with caution
- » Adsorption of nutrients
 - \rightarrow only phosphate in relevant dimensions

» At present not recommended as component in substrates

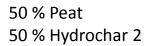

- \rightarrow too little positive experience
- \rightarrow no prediction about further significance at present

Growth of chinese cabbage in substrates with Hydrochar and adequate fertiliziation

(Neumaier et al. 2017)

Growth of chinese cabbage in substrates with Hydrochar and adequate fertiliziation

100 % Peat



50 % Peat 50 % Hydrochar 1

100 % Hydrochar 1

100 % Hydrochar 2

Growth of basil in substrates with Hydrochar

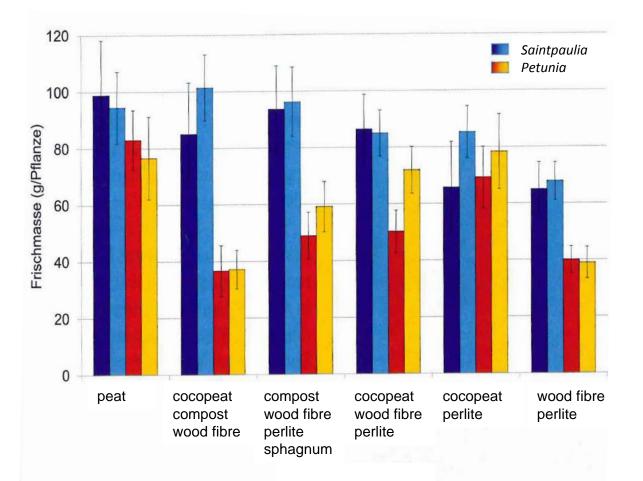
(Neumaier et al. 2017)

100 vol.% peat

50 vol.% cocopeat 35 vol.% wood fibre 15 vol.% compost 35 vol.% wood fibre 15 vol.% compost 20 vol.% perlite 30 vol.% spahgnum 100 vol.% peat

50 vol.% cocopeat 35 vol.% wood fibre 15 vol.% compost 35 vol.% wood fibre 15 vol.% compost 20 vol.% perlite 30 vol.% spahgnum

30 vol.% cocopeat 20 vol.% wood fibre 50 vol.% perlite


50 vol.% cocopeat 50 vol.% perlite 50 vol.% wood fibre 50 vol.% perlite 30 vol.% cocopeat 20 vol.% wood fibre 50 vol.% perlite

50 vol.% cocopeat 50 vol.% perlite 50 vol.% wood fibre 50 vol.% perlite

Saintpaulia ionantha and Petunia-Cultivars in different substrates

(Emmel and Ahrens, 2019)

Fresh matter of Saintpaulia ionantha and Petunia-Cultivars in different substrates at the end of trial (Emmel and Ahrens, 2019)

Suggestions for use

Peat substitute	Ratio (vol%)	Ideal mixing partner
Bark compost	up to 50	Fine materials
Green compost	20 - 40	Nutrient-poor materials with low pH-value
Compost of digestate	up to 10 %	Materials with low salt and P content
Wood fibre	20 - 40	Materials with low biological activity and fine structure
Cocofibre	up to 20	Fine materials
Cocopeat	up to 100	_
Xylit	20 - 40	Green and bark compost, wood fibre

100 vol. % Peat

50 vol. % Cocopeat 30 vol. % Green compost 20 vol. % Cocofibre

- » 9.5 mio m³ peat p. a.
- » Germany, 2019, use of:

1.0 mio m³ peat substitutes p.a.

500.000 m³ green compost 300.000 m³ wood fibre 235.000 m³ bark compost 150.000 m³ coco products

(Gugenhan, 2019)

- » Peat substitution for ornamental plants is possible
- » Apart from cocopeat, all substances are only possible in mixtures with different proportions
- » Culture management (irrigation, fertilization) must be adapted to the substrate properties
- Precise knowledge of the components used is a prerequisite
- » High quality products are important (quality assured products)
- » Substrates are not a waste bin
- » Caution with "exotic" materials
- The availability of peat substitues in sufficient quantities and with a competitive price is not guaranteed in the future

Literature

Emmel, M. (2014): Kokosmark mit wachsender Bedeutung als Ausgangsstoff. Gärtnerbörse 4/14, p 42-46.

Emmel, M. and Ahrens, N. (2019): Torffreie Kultursubstrate im Zierpflanzenbau. Gärtnerbörse 12/19, p 46-49.

Großmann, M.; Neumaier, D.; Schmitt, B.; Wartenberg, S.; Wrede, A. (2015): Torfreduktion und Vollversorgung mit Vorratsdüngung bei Stauden. Gärtnerbörse Oktober 2015, p. 56 – 61.

Gugenhan, E. (2019): Substrate – Schwerpunktthema beim Hohenheimer Gartenbautag. Gärtnerbörse 12/19, p 50-51.

Lohr, D. (2012): personal communication.

Lohr, D.; Voßeler, R.; Girmann, S.; Meinken, E. (2014): Biokohle als Torfersatz in Kultursubstraten für den Topfkräuteranbau. Versuche im deutschen Gartenbau 2014.

Meinken, E.; Schumacher, H.-J.; Schmitz, H.-J.; Sprau, G. (2009): Umweltverträgliche Restnährstoffverwertung aus Biogasanalgen als Torfersatzstoffe im Gartenbau. DBU-Project, final report.

Meinken, E. (2014): personal communication

Neumaier, D.; Lohr, D., Voßeler, R.; Girmann, S.; Kolbinger, S.; Meinken, E. (2017): Hydrochars as peat substitute in growing media for organically grown potted herbs. Acta Hort. https://doi.org/10.17660/ActaHortic.2017.1168.48

All pictures, except explicitly marked : HSWT (University of applied sciences Weihenstephan-Triesdorf, Institute for Horticulture, Group for Plant nutrition and soil science)